Publications

1. High irradiance performance of metal halide perovskites for concentrator photovoltaics. Zhiping Wang, Qianqian Lin, Bernard Wenger, M. Greyson Christoforo, Yen-Hung Lin, Matthew T. Klug, Michael B. Johnston, Laura M. Herz & Henry J. Snaith, Nature Energy (2018). https://doi.org/10.1038/s41560-018-0220-2

2. Self-Assembled Hole Transporting Monolayer for Highly Efficient Perovskite Solar Cells. Artiom Magomedov, Amran Al-Ashouri, Ernestas Kasparavičius, Simona Strazdaite, Gediminas Niaura, Marko Jošt, Tadas Malinauskas, Steve Albrecht, Vytautas Getautis, Advanced Energy Materials (2018). https://onlinelibrary.wiley.com/doi/10.1002/aenm.201801892

3. Efficient and Stable Perovskite Solar Cells Using Low-Cost Aniline-Based Enamine Hole-Transporting Materials. Deimante Vaitukaityte, Zhiping Wang, Tadas Malinauskas, Artiom Magomedov, Giedre Bubniene, Vygintas Jankauskas, Vytautas Getautis, Henry J. Snaith, Advanced Materials (2018). https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201803735

4. Molecular engineering of enamine-based small organic compounds as hole-transporting materials for perovskite solar cells. Maryte Daskeviciene, Sanghyun Paek, Artiom Magomedov, Kyoung Taek Cho, Michael Saliba, Ausra Kizeleviciute, Tadas Malinauskas, Alytis Gruodis, Vygintas Jankauskas, Egidijus Kamarauskas, Mohammad Khaja Nazeeruddin, Vytautas Getautis, Journal of Materials Chemistry C (2019). https://pubs.rsc.org/en/content/articlelanding/2019/tc/c8tc06297h#!divAb...

5. Planar perovskite solar cells with long-term stability using ionic liquid additives. Bai S, Da P, Li C, Wang Z, Yuan Z, Fu F, et al. Nature 2019;571:245–50. doi:10.1038/s41586-019-1357-2. https://www.nature.com/articles/s41586-019-1357-2

6. Overcoming Zinc Oxide Interface Instability with a Methylammonium‐Free Perovskite for High‐Performance Solar Cells. Schutt K, Nayak PK, Ramadan AJ, Wenger B, Lin Y, Snaith HJ. Adv Funct Mater 2019:1900466. doi:10.1002/adfm.201900466. https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201900466

7. Inexpensive Hole Transporting Materials Derived from Tröger’s Base Afford Efficient and Stable Perovskite Solar Cells. Angew. Chem. Int. Ed. 2019, 58, 11266 –11272. DOI: 10.1002/anie.201903705 https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.201903705

8. Defect Activity in Metal–Halide Perovskites. Motti SG, Meggiolaro D, Martani S, Sorrentino R, Barker AJ, De Angelis F, et al. Adv Mater 2019:1901183. doi:10.1002/adma.201901183. https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201901183

9. Oxidative Passivation of Metal Halide Perovskites. Julian S.W. Godding, Alexandra J. Ramadan, Yen-Hung Lin, Kelly Schutt, Henry J. Snaith, Bernard Wenger, Joule, 25424351. DOI: 10.1016/j.joule.2019.08.006. https://www.cell.com/joule/pdf/S2542-4351(19)30381-2.pdf

10. Application of a Tetra‐TPD‐Type Hole‐Transporting Material Fused by a Tröger's Base Core in Perovskite Solar Cells. Titas Braukyla, Rui Xia, Tadas Malinauskas, Maryte Daskeviciene, Artiom Magomedov, Egidijus Kamarauskas, Vygintas Jankauskas, Zhaofu Fei, Cristina Roldán-Carmona, Cristina Momblona, Mohammad Khaja Nazeeruddin, Paul J. Dyson, Vytautas Getautis, Solar RRL, 3/9, 1900224, 2367198X. DOI: 10.1002/solr.201900224. https://onlinelibrary.wiley.com/doi/pdf/10.1002/solr.201900224#accessDen...

11. Controlling competing photo-induced trap formation and healing in lead halide perovskites. Silvia Motti; Daniele Meggiolaro; Alex Barker; Edoardo Mosconi; Carlo Andrea Perini; James Ball; Min Kim; Filippo De Angelis; Annamaria Petrozza, Nature photonics, 1749-4893. DOI: 10.1038/s41566-019-0435-1. https://www.nature.com/articles/s41566-019-0435-1

12. First-Principles Modeling of Defects in Lead Halide Perovskites: Best Practices and Open Issues. Daniele Meggiolaro, Filippo De Angelis, ACS Energy Letters, 2380-8195. DOI: 10.1021/acsenergylett.8b01212. https://pubs.acs.org/doi/10.1021/acsenergylett.8b01212

13. Charge Localization, Stabilization, and Hopping in Lead Halide Perovskites: Competition between Polaron Stabilization and Cation Disorder. Francesco Ambrosio, Daniele Meggiolaro, Edoardo Mosconi, Filippo De Angelis, ACS Energy Letters, 2380-8195. DOI: 10.1021/acsenergylett.9b01353. https://pubs.acs.org/doi/10.1021/acsenergylett.9b01353

14. From Large to Small Polarons in Lead, Tin and Mixed Lead-Tin Halide Perovskites. Mahata Arup; Meggiolaro Daniele; De Angelis Filippo, J. Phys. Chem. Lett.2019, 1, DOI: 10.5281/zenodo.3484667. https://pubs.acs.org/doi/10.1021/acs.jpclett.9b00422
                   

 

 

 

List of site pages