Publications

1. High irradiance performance of metal halide perovskites for concentrator photovoltaics. Zhiping Wang, Qianqian Lin, Bernard Wenger, M. Greyson Christoforo, Yen-Hung Lin, Matthew T. Klug, Michael B. Johnston, Laura M. Herz & Henry J. Snaith, Nature Energy (2018). https://doi.org/10.1038/s41560-018-0220-2

2. Self-Assembled Hole Transporting Monolayer for Highly Efficient Perovskite Solar Cells. Artiom Magomedov, Amran Al-Ashouri, Ernestas Kasparavičius, Simona Strazdaite, Gediminas Niaura, Marko Jošt, Tadas Malinauskas, Steve Albrecht, Vytautas Getautis, Advanced Energy Materials (2018). https://onlinelibrary.wiley.com/doi/10.1002/aenm.201801892

3. Efficient and Stable Perovskite Solar Cells Using Low-Cost Aniline-Based Enamine Hole-Transporting Materials. Deimante Vaitukaityte, Zhiping Wang, Tadas Malinauskas, Artiom Magomedov, Giedre Bubniene, Vygintas Jankauskas, Vytautas Getautis, Henry J. Snaith, Advanced Materials (2018). https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201803735

4. Molecular engineering of enamine-based small organic compounds as hole-transporting materials for perovskite solar cells. Maryte Daskeviciene, Sanghyun Paek, Artiom Magomedov, Kyoung Taek Cho, Michael Saliba, Ausra Kizeleviciute, Tadas Malinauskas, Alytis Gruodis, Vygintas Jankauskas, Egidijus Kamarauskas, Mohammad Khaja Nazeeruddin, Vytautas Getautis, Journal of Materials Chemistry C (2019). https://pubs.rsc.org/en/content/articlelanding/2019/tc/c8tc06297h#!divAb...

5. Planar perovskite solar cells with long-term stability using ionic liquid additives. Bai S, Da P, Li C, Wang Z, Yuan Z, Fu F, et al. Nature 2019;571:245–50. doi:10.1038/s41586-019-1357-2. https://www.nature.com/articles/s41586-019-1357-2

6. Overcoming Zinc Oxide Interface Instability with a Methylammonium‐Free Perovskite for High‐Performance Solar Cells. Schutt K, Nayak PK, Ramadan AJ, Wenger B, Lin Y, Snaith HJ. Adv Funct Mater 2019:1900466. doi:10.1002/adfm.201900466. https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201900466

7. Inexpensive Hole Transporting Materials Derived from Tröger’s Base Afford Efficient and Stable Perovskite Solar Cells. Angew. Chem. Int. Ed. 2019, 58, 11266 –11272. DOI: 10.1002/anie.201903705 https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.201903705

8. Defect Activity in Metal–Halide Perovskites. Motti SG, Meggiolaro D, Martani S, Sorrentino R, Barker AJ, De Angelis F, et al. Adv Mater 2019:1901183. doi:10.1002/adma.201901183. https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201901183

9. Oxidative Passivation of Metal Halide Perovskites. Julian S.W. Godding, Alexandra J. Ramadan, Yen-Hung Lin, Kelly Schutt, Henry J. Snaith, Bernard Wenger, Joule, https://www.sciencedirect.com/science/article/pii/S2542435119303812

10. Application of a Tetra‐TPD‐Type Hole‐Transporting Material Fused by a Tröger's Base Core in Perovskite Solar Cells. Titas Braukyla, Rui Xia, Tadas Malinauskas, Maryte Daskeviciene, Artiom Magomedov, Egidijus Kamarauskas, Vygintas Jankauskas, Zhaofu Fei, Cristina Roldán-Carmona, Cristina Momblona, Mohammad Khaja Nazeeruddin, Paul J. Dyson, Vytautas Getautis, Solar RRL, 3/9, 1900224, 2367198X. DOI: 10.1002/solr.201900224. https://onlinelibrary.wiley.com/doi/pdf/10.1002/solr.201900224#accessDen...

11. Controlling competing photo-induced trap formation and healing in lead halide perovskites. Silvia Motti; Daniele Meggiolaro; Alex Barker; Edoardo Mosconi; Carlo Andrea Perini; James Ball; Min Kim; Filippo De Angelis; Annamaria Petrozza, Nature photonics, 1749-4893. DOI: 10.1038/s41566-019-0435-1. https://www.nature.com/articles/s41566-019-0435-1

12. First-Principles Modeling of Defects in Lead Halide Perovskites: Best Practices and Open Issues. Daniele Meggiolaro, Filippo De Angelis, ACS Energy Letters, 2380-8195. DOI: 10.1021/acsenergylett.8b01212. https://pubs.acs.org/doi/10.1021/acsenergylett.8b01212

13. Charge Localization, Stabilization, and Hopping in Lead Halide Perovskites: Competition between Polaron Stabilization and Cation Disorder. Francesco Ambrosio, Daniele Meggiolaro, Edoardo Mosconi, Filippo De Angelis, ACS Energy Letters, 2380-8195. DOI: 10.1021/acsenergylett.9b01353. https://pubs.acs.org/doi/10.1021/acsenergylett.9b01353

14. From Large to Small Polarons in Lead, Tin and Mixed Lead-Tin Halide Perovskites. Mahata Arup; Meggiolaro Daniele; De Angelis Filippo, J. Phys. Chem. Lett.2019, 1, https://pubs.acs.org/doi/10.1021/acs.jpclett.9b00422

15. Renewable Energy from Finite Resources: Example of Emerging Photovoltaics. Felix Schmidt, Andreas Schäffer, Markus Lenz, Swiss Chemical Society.   https://doi.org/10.2533/chimia.2019.874

16. Dimethylammonium: An A‐Site Cation for Modifying CsPbI3. Ashley R. Marshall, Harry C. Sansom, Melissa M. McCarthy, Jonathan H. Warby, Olivia J. Ashton, Bernard Wenger, Henry J. Snaith. RRL Solar.  10.1002/solr.202000599

17. Revealing the Stoichiometric Tolerance of Lead Trihalide Perovskite Thin Films. Alexandra J. Ramadan, Maryline Ralaiarisoa, Fengshuo Zu, Luke A. Rochford, Bernard Wenger, Norbert Koch, Henry J. Snaith. ACS Publications.  https://pubs.acs.org/doi/10.1021/acs.chemmater.9b02639

18. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Amran Al-Ashouri, Eike Köhnen, Bor Li, Artiom Magomedov, Hannes Hempel, Pietro Caprioglio, José A. Márquez, Anna Belen Morales Vilches, Ernestas Kasparavicius, Joel A. Smith, Nga Phung, Dorothee Menzel, Max Grischek, Lukas Kegelmann, Dieter Skroblin, Christian Gollwitzer, Tadas Malinauskas, Marko Jošt, Gašper Matič, Bernd Rech, Rutger Schlatmann, Marko Topič, Lars Korte, Antonio Abate, Bernd Stannowski, Dieter Neher, Martin Stolterfoht, Thomas Unold, Vytautas Getautis, Steve Albrecht. Science.  https://www.science.org/doi/10.1126/science.abd4016

19. Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells.  Amran Al-Ashouri, Artiom Magomedov, Marcel Roß, Marko Jošt, Martynas Talaikis, Ganna Chistiakova, Tobias Bertram, José A. Márquez, Eike Köhnen, Ernestas Kasparavičius, Sergiu Levcenco, Lidón Gil-Escrig, Charles J. Hages, Rutger Schlatmann, Bernd Rech, Tadas Malinauskas, Thomas Unold, Christian A. Kaufmann, Lars Korte, Gediminas Niaura, Vytautas Getautis, Steve Albrecht. Energy & Environmental Science.   https://pubs.rsc.org/en/content/articlelanding/2019/ee/c9ee02268f

20. Carbazole-Terminated Isomeric Hole-Transporting Materials for Perovskite Solar Cells. Kasparas Rakstys, Sanghyun Paek, Aida Drevilkauskaite, Hiroyuki Kanda, Sarune Daskeviciute, Naoyuki Shibayama, Maryte Daskeviciene, Alytis Gruodis, Egidijus Kamarauskas, Vygintas Jankauskas, Vytautas Getautis, Mohammad Khaja Nazeeruddin. ACS Publications. https://pubs.acs.org/doi/10.1021/acsami.9b23495

21. Enamine-based hole transporting materials for vacuum-deposited perovskite solar cells. Matas Steponaitis, Maria-Grazia La-Placa, İsmail Cihan Kaya, Giedre Bubniene, Vygintas Jankauskas, Maryte Daskeviciene, Michele Sessolo, Tadas Malinauskas, Henk J. Bolink, Vytautas Getautis. RSC. https://pubs.rsc.org/en/content/articlelanding/2020/se/d0se00728e

22. Metal composition influences optoelectronic quality in mixed-metal lead–tin triiodide perovskite solar absorbers. Matthew T. Klug, Rebecca L. Milot, Jay B. Patel, Thomas Green, Harry C. Sansom, Michael D. Farrar, Alexandra J. Ramadan, Samuele Martani, Zhiping Wang, Bernard Wenger, James M. Ball, Liam Langshaw, Annamaria Petrozza, Michael B. Johnston, Laura M. Herz, Henry J. Snaith. Energy & Environmental Science.   https://pubs.rsc.org/en/content/articlelanding/2020/ee/d0ee00132e

23. Efficient Wide-Bandgap Mixed-Cation and Mixed-Halide Perovskite Solar Cells by Vacuum Deposition. Lidón Gil-Escrig, Chris Dreessen, Francisco Palazon, Zafer Hawash, Ellen Moons, Steve Albrecht, Michele Sessolo, Henk J. Bolink. ACS. https://pubs.acs.org/doi/10.1021/acsenergylett.0c02445

24. Vacuum-Deposited Multication Tin–Lead Perovskite Solar Cells. Ana M. Igual-Muñoz, Aroa Castillo, Chris Dreessen, Pablo P. Boix, Henk J.  ACS. Bolink. https://pubs.acs.org/doi/abs/10.1021/acsaem.9b02413

25. Universal approach toward high-efficiency two-dimensional perovskite solar cells via a vertical-rotation process. Yi Yang, Cheng Liu, Arup Mahata, Mo Li, Cristina Roldán-Carmona, Yong Ding, Zulqarnain Arain, Weidong Xu, Yunhao Yang, Pascal Alexander Schouwink, Andreas Züttel, Filippo De Angelis, Songyuan Dai, Mohammad Khaja Nazeeruddin. Energy & Environmental Science. https://pubs.rsc.org/en/content/articlelanding/2020/ee/d0ee01833c

26. Revealing Factors Influencing the Operational Stability of Perovskite Light-Emitting Diodes. Jonathan H. Warby, Bernard Wenger, Alexandra J. Ramadan, Robert D. J. Oliver, Harry C. Sansom, Ashley R. Marshall, Henry J. Snaith. ACS.  https://pubs.acs.org/doi/abs/10.1021/acsnano.0c03516

27. Ruthenium pentamethylcyclopentadienyl mesitylene dimer: a sublimable n-dopant and electron buffer layer for efficient n–i–p perovskite solar cells. Jorge Avila, Maria-Grazia La-Placa, Elena Longhi, Michele Sessolo, Stephen Barlow, Seth R. Marder, Henk J. Bolink. RSC. https://pubs.rsc.org/en/content/articlelanding/2019/ta/c9ta09838k

28. Revealing the origin of voltage loss in mixed-halide perovskite solar cells. Suhas Mahesh, James M. Ball, Robert D. J. Oliver, David P. McMeekin, Pabitra K. Nayak, Michael B. Johnston, Henry J. Snaith. Energy & Environmental Science. https://pubs.rsc.org/en/content/articlelanding/2020/ee/c9ee02162k

29. Biodeterioration Affecting Efficiency and Lifetime of Plastic-Based Photovoltaics. Felix Schmidt, Yannick-Serge Zimmermann, Gisele Alves dos Reis Benatto, Boris A. Kolvenbach, Andreas Schäffer, Frederik C. Krebs, Eric D. van Hullebusch, Markus Lenz. Joule. https://www.sciencedirect.com/science/article/pii/S2542435120303962

30. Doped but Stable: Spirobisacridine Hole Transporting Materials for Hysteresis-Free and Stable Perovskite Solar Cells. Nikita Drigo, Cristina Roldan-Carmona, Marius Franckevičius, Kun-Han Lin, Rokas Gegevičius, Hobeom Kim, Pascal A. Schouwink, Albertus A. Sutanto, Selina Olthof, Muhammad Sohail, Klaus Meerholz, Vidmantas Gulbinas, Clémence Corminboeuf, Sanghyun Paek, Mohammad Khaja Nazeeruddin. ACS. https://pubs.acs.org/doi/10.1021/jacs.9b07166

31. Adduct-based p-doping of organic semiconductors. Nobuya Sakai, Ross Warren, Fengyu Zhang, Simantini Nayak, Junliang Liu, Sameer V. Kesava, Yen-Hung Lin, Himansu S. Biswal, Xin Lin, Chris Grovenor, Tadas Malinauskas, Aniruddha Basu, Thomas D. Anthopoulos, Vytautas Getautis, Antoine Kahn, Moritz Riede, Pabitra K. Nayak, Henry J. Snaith. Nature. https://www.nature.com/articles/s41563-021-00980-x

32. Efficient Vacuum-Deposited Perovskite Solar Cells with Stable Cubic FA1–xMAxPbI3Lidón Gil-Escrig, Chris Dreessen, Ismail Cihan Kaya, Beom-Soo Kim, Francisco Palazon, Michele Sessolo, Henk J. Bolink. ACS. https://pubs.acs.org/doi/abs/10.1021/acsenergylett.0c01473

33. High voltage vacuum-processed perovskite solar cells with organic semiconducting interlayers. Azin Babaei, Chris Dreessen, Michele Sessolo, Henk J. Bolink. ACS. https://pubs.rsc.org/en/content/articlehtml/2020/ra/d0ra00214c

34. Phosphine Oxide Derivative as a Passivating Agent to Enhance the Performance of Perovskite Solar Cells. Albertus Adrian Sutanto, Cansu Igci, Hobeom Kim, Hiroyuki Kanda, Naoyuki Shibayama, Mounir Mensi, Valentin I. E. Queloz, Cristina Momblona, Hyung Joong Yun, Henk J. Bolink, Aron J. Huckaba, Mohammad Khaja Nazeeruddin. ACS. https://pubs.acs.org/doi/abs/10.1021/acsaem.0c02472

35. High External Photoluminescence Quantum Yield in Tin Halide Perovskite Thin Films. Isabella Poli, Guan-Woo Kim, E Laine Wong, Antonella Treglia, Giulia Folpini, Annamaria Petrozza. ACS. https://pubs.acs.org/doi/10.1021/acsenergylett.0c02612

36. Band-bending induced passivation: high performance and stable perovskite solar cells using a perhydropoly(silazane) precursor. Hiroyuki Kanda, Naoyuki Shibayama, Aron Joel Huckaba, Yonghui Lee, Sanghyun Paek, Nadja Klipfel, Cristina Roldán-Carmona, Valentin Ianis Emmanuel Queloz, Giulia Grancini, Yi Zhang, Mousa Abuhelaiqa, Kyung Taek Cho, Mo Li, Mounir Driss Mensi, Sachin Kinge, Mohammad Khaja Nazeeruddin. RSC. https://pubs.rsc.org/en/content/articlelanding/2020/ee/c9ee02028d

37. Potential and limitations of CsBi3I10 as a photovoltaic material. Paz Sebastia-Luna, María C. Gélvez-Rueda, Chris Dreessen, Michele Sessolo, Ferdinand C. Grozema, Francisco Palazon, Henk J. Bolink. Journal of Materials Chemistry. https://pubs.rsc.org/en/content/articlelanding/2020/ta/d0ta02237c

38. Charge localization and trapping at surfaces in lead-iodide perovskites: the role of polarons and defects. Francesco Ambrosio, Daniele Meggiolaro, Edoardo Mosconi, Filippo De Angelis. Journal of Materials Chemistry. https://pubs.rsc.org/en/content/articlelanding/2020/ta/d0ta00798f

39. Cut from the Same Cloth: Enamine-Derived Spirobifluorenes as Hole Transporters for Perovskite Solar Cells. Deimante Vaitukaityte, Cristina Momblona, Kasparas Rakstys, Albertus Adrian Sutanto, Bin Ding, Cansu Igci, Vygintas Jankauskas, Alytis Gruodis, Tadas Malinauskas, Abdullah M. Asiri, Paul J. Dyson, Vytautas Getautis, Mohammad Khaja Nazeeruddin. https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.1c01486

40. Crystallographically Oriented Hybrid Perovskites via Thermal Vacuum Codeposition. Nadja Klipfel, Cristina Momblona, Hiroyuki Kanda, Naoyuki Shibayama, Yuiga Nakamura, Mounir Driss Mensi, Cheng Liu, Cristina Roldán-Carmona, Mohammad Khaja Nazeeruddin. RRL Solar. https://onlinelibrary.wiley.com/doi/full/10.1002/solr.202100191

41. Defect activity in metal halide perovskites with wide and narrow bandgap. Yang Zhou, Isabella Poli, Daniele Meggiolaro, Filippo De Angelis, Annamaria Petrozza. Nature. https://www.nature.com/articles/s41578-021-00331-x

42. Thermal- and Light-Induced Evolution of the 2D/3D Interface in Lead-Halide Perovskite Films. Francesca Fiorentino, Munirah D. Albaqami, Isabella Poli, Annamaria Petrozza. ACS. https://pubs.acs.org/doi/abs/10.1021/acsami.1c09695

43. Solvent-Free Synthesis and Thin-Film Deposition of Cesium Copper Halides with Bright Blue Photoluminescence. Paz Sebastia-Luna, Javier Navarro-Alapont, Michele Sessolo, Francisco Palazon, Henk J. Bolink. ACS. https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.9b03898

44. Tunable Wide‐Bandgap Monohalide Perovskites. Yousra El Ajjouri, Ana M. Igual‐Muñoz, Michele Sessolo, Francisco Palazon, Henk J. Bolink. Advanced Optical Materials, Wiley. https://onlinelibrary.wiley.com/doi/full/10.1002/adom.202000423

45. Deposition Kinetics and Compositional Control of Vacuum-Processed CH3NH3PbI3 Perovskite. Beom-Soo Kim, Lidón Gil-Escrig, Michele Sessolo, Henk J. Bolink. ACS. https://pubs.acs.org/doi/10.1021/acs.jpclett.0c01995